En solo algunos días empezarán los clasificatorios a la Perfect World Shanghai Major, que el segundo mundial de Counter-Strike 2, que se tiene en este 2024 y como vemos en esta oportunidad se llevará a cabo en China, es así que por primera vez este tipo de torneo llega al continente asiático, y todas su […]
Leer másLlega la fecha en el año en que nuevamente tenemos el increíble episodio del Especial de Noche de Brujas que es conocido también como Treehouse of Horror (La Casita del Horror) de la serie animada de Los Simpson, y en esta ocasión el intro que es conocido como el Gag del Sofá ha sido inspirado […]
Leer másLos jugadores de Team Waska siguen haciendo historia para Sudamérica y Perú en el torneo de la DreamLeague Season 24. Con esto Kotaro, DarkMago, Sacred, Matthew, y Yadomi han empezado con pie derecho la segunda etapa del conocido torneo de Dota 2, ya que ganaron su primera serie contra Xtreme Gaming. Las partidas podrán seguirlas […]
Leer más
Durante el AWS re: Invent, Amazon Web Services, Inc. (AWS), una empresa de Amazon.com, Inc., anunció ocho nuevas capacidades para Amazon SageMaker, su servicio de Machine learning (ML) end to end.
Los desarrolladores, científicos de datos y analistas de negocios utilizan Amazon SageMaker para crear, entrenar e implementar modelos de ML de forma rápida y sencilla mediante el uso de infraestructura, herramientas y flujos de trabajo completamente administrados. A medida que los clientes continúan innovando con ML, están creando más modelos que nunca y necesitan capacidades avanzadas para administrar de manera eficiente el desarrollo, el uso y el rendimiento de estos modelos. El anuncio de la compañía incluye nuevas capacidades de gobernanza de Amazon SageMaker que permiten la visibilidad del rendimiento del modelo a lo largo del ciclo de vida del ML.
Las nuevas capacidades de Amazon SageMaker Studio Notebook, por ejemplo, brindan una experiencia de bloc de notas mejorada que permite a los clientes inspeccionar y abordar problemas de calidad de datos con solo unos pocos clics, facilitar la colaboración en tiempo real entre los equipos de ciencia de datos y acelerar el proceso de pasar de la experimentación a la producción al convertir código del bloc de notas en trabajos automatizados.
“Hoy, decenas de miles de clientes de todos los tamaños y de todas las industrias confían en Amazon SageMaker. Los clientes de AWS crean millones de modelos con miles de millones de parámetros y generan billones de predicciones por mes. Muchos clientes están utilizando ML a una escala que no se conocía hace solo unos años”, dice Bratin Saha, vicepresidente de Inteligencia Artificial y Machine Learning de AWS. “Las nuevas capacidades de Amazon SageMaker anunciadas hoy facilitan aún más que los equipos agilicen el desarrollo y la implementación end to end de los modelos de ML. Desde herramientas de gobernanza especialmente diseñadas hasta una experiencia de bloc de notas de próxima generación y pruebas de modelos simplificadas hasta soporte mejorado para datos geoespaciales, estamos mejorando Amazon SageMaker para ayudar a los clientes a aprovechar el ML a escala”.
La nube permitió el acceso a ML para más usuarios, pero hasta hace unos años, el proceso de creación, entrenamiento e implementación de modelos seguía siendo minucioso y tedioso, y requería una iteración continua por parte de pequeños equipos de científicos de datos durante semanas o meses antes de llegar a un modelo listo para producción. Amazon SageMaker se lanzó hace cinco años para abordar estos desafíos y, desde entonces, AWS ha agregado más de 250 funciones y capacidades nuevas para facilitar a los clientes el uso de ML en sus negocios.
En la actualidad, algunos clientes emplean a cientos de profesionales que utilizan Amazon SageMaker para realizar predicciones que ayudan a resolver los desafíos más difíciles y así mejorar la experiencia del cliente, optimizar los procesos comerciales y acelerar el desarrollo de nuevos productos y servicios. A medida que ha aumentado la adopción de ML, también lo han hecho los tipos de datos que los clientes quieren usar, así como los niveles de control, automatización y calidad que los clientes necesitan para respaldar el uso responsable del ML. Estas nuevas capacidades, se basan en la historia de innovación de Amazon SageMaker para apoyar a profesionales de todos los niveles de habilidad alrededor del mundo.
Nuevas capacidades de gobernanza de ML en Amazon SageMaker
Amazon SageMaker ofrece nuevas capacidades que ayudan a los clientes a escalar más fácilmente la gobernanza a lo largo del ciclo de vida del modelo de ML. A medida que aumenta la cantidad de modelos y usuarios dentro de una organización, se vuelve más difícil establecer controles de acceso con privilegios mínimos y establecer procesos de gobernanza para documentar la información del modelo (por ejemplo, conjuntos de datos de entrada, información del entorno de entrenamiento, descripción del uso del modelo y calificación de riesgo). Una vez que se implementan los modelos, los clientes también deben monitorear el sesgo y la desviación de características para garantizar que funcionen como se espera.
Los administradores de ML, personas que crean y monitorean los sistemas de ML de una organización, deben equilibrar el impulso para optimizar el desarrollo mientras controlan el acceso a tareas, recursos y datos dentro de los flujos de trabajo de ML. Hoy en día, los administradores crean hojas de cálculo o usan listas ad hoc para navegar por las políticas de acceso necesarias para docenas de actividades diferentes (preparación y entrenamiento) y funciones (ingeniero de ML y científico de datos).
El mantenimiento de estas herramientas es manual y puede tomar semanas determinar las tareas específicas que los nuevos usuarios necesitarán para hacer su trabajo de manera efectiva. Amazon SageMaker Role Manager facilita a los administradores el control del acceso y la definición de permisos para los usuarios. De esta manera, los administradores pueden seleccionar y editar plantillas prediseñadas basados en las distintas funciones y responsabilidades de los usuarios. Luego, la herramienta crea automáticamente las políticas de acceso con los permisos necesarios en cuestión de minutos, lo que reduce el tiempo y el esfuerzo para incorporar y administrar usuarios.
Amazon SageMaker Model Cards brinda un único lugar para almacenar información del modelo en la consola de AWS, lo que simplifica la documentación a lo largo del ciclo de vida. La nueva capacidad completa automáticamente los detalles del entrenamiento, como conjuntos de datos de entrada, entorno de entrenamiento y sus resultados, directamente en Amazon SageMaker Model Cards. Los profesionales también pueden incluir información adicional utilizando un cuestionario autoguiado para documentar la información del modelo (objetivos de desempeño o calificación de riesgo), los resultados del entrenamiento y la evaluación (medidas de sesgo o precisión) y registrar las observaciones para futuras referencias a fin de mejorar aún más la gobernanza y apoyar el uso responsable de ML.
Notebooks de próxima generación
Amazon SageMaker Studio Notebook brinda a los profesionales una experiencia de bloc de notas completamente administrada desde la exploración de datos hasta la implementación. A medida que los equipos crecen en tamaño y complejidad, es posible que docenas de profesionales necesiten desarrollar modelos en colaboración utilizando blocs de notas. AWS continúa ofreciendo la mejor experiencia de bloc de notas para los usuarios con el lanzamiento de tres nuevas funciones que ayudan a los clientes a coordinar y automatizar el código de su bloc de notas.
Con soporte integrado para servicios como BitBucket y AWS CodeCommit, los equipos pueden administrar fácilmente diferentes versiones del bloc de notas y comparar cambios a lo largo del tiempo. Los recursos afiliados, como experimentos y modelos de ML, también se guardan automáticamente para ayudar a los equipos a mantenerse organizados.
Para comenzar a utilizar la próxima generación de bloc de notas Amazon SageMaker Studio y estas nuevas capacidades, visite aws.amazon.com/sagemaker/studio/notebooks.
Validación automatizada de nuevos modelos mediante solicitudes de inferencia en tiempo real
Los profesionales prueban y validan cada modelo antes de implementarlo en producción para verificar el rendimiento e identificar errores que podrían afectar negativamente al negocio. Por lo general, utilizan datos de solicitudes de inferencia históricas para probar el rendimiento de un nuevo modelo, pero estos datos a veces no tienen en cuenta las solicitudes de inferencia actuales del mundo real. Por ejemplo, los datos históricos de un modelo ML para planificar la ruta más rápida pueden no tener en cuenta un accidente o un cierre repentino de la carretera que altere significativamente el flujo de tráfico. Para abordar este problema, los profesionales enrutan una copia de las solicitudes de inferencia que está yendo a un modelo de producción al nuevo modelo que quieren probar. Puede llevar semanas construir esta infraestructura de prueba, duplicar las solicitudes de inferencia y comparar el rendimiento de los modelos en métricas clave (latencia y rendimiento). Si bien esto brinda a los profesionales una mayor confianza en el rendimiento del modelo, el costo y la complejidad de implementar estas soluciones para cientos o miles de modelos lo hacen inescalable.
Amazon SageMaker Inference ahora ofrece una capacidad para que a los profesionales les resulte más fácil comparar el rendimiento de nuevos modelos con los modelos de producción, utilizando los mismos datos de solicitud de inferencia del mundo real en tiempo real. De esta forma, pueden escalar fácilmente sus pruebas a miles de nuevos modelos simultáneamente, sin construir su propia infraestructura de pruebas. Para comenzar, un cliente selecciona el modelo de producción con el que desea realizar la prueba y Amazon SageMaker Inference implementa el nuevo modelo en un entorno de hosting con exactamente las mismas condiciones. Amazon SageMaker enruta una copia de las solicitudes de inferencia recibidas por el modelo de producción al nuevo modelo y crea un dashboard para mostrar las diferencias de rendimiento en las métricas clave, de modo que los clientes puedan ver cómo difiere cada modelo en tiempo real. Una vez que el cliente valida el rendimiento del nuevo modelo y está seguro de que no tiene errores potenciales, puede implementarlo.
Te dejaremos noticias todos los días en tu bandeja de entrada